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Abstract
The dynamical system approach has recently acquired great importance in the
investigation on higher order theories of gravity. In this talk I review some of
the main results obtained with this method and I consider briefly a number of
further developments.

PACS numbers: 98.80.Jk, 04.50.+h, 05.45.−a

1. Introduction

Since the very first proposal of general relativity (GR), modifications of Einstein’s theory
of gravity have been introduced for various purposes: from unification of the fundamental
interaction to the explanation of the dark energy phenomenon. In spite of their different nature,
these models have a common drawback: they present even more technical difficulties than
general relativity. This means that it is very hard to obtain an understanding of the physical
properties of these models and, above all, to test them against observations. Consequently,
much effort has been invested into devising ways to overcome these technical issues. A
technique that has proven to be very successful is the so-called dynamical system approach
(DSA) to cosmology. This method was first developed for general relativity and it has led to
beautiful insights into GR cosmologies [1].

In this paper we review some of the recent results obtained from the application of DSA
to fourth order gravity and, in particular, to Rn-gravity [2, 3]. We also discuss very briefly the
perspective of some further applications of this method.

Unless otherwise specified, we will use natural units (h̄ = c = kB = 8πG = 1)

throughout the paper and Greek indices run from 0 to 3. The semicolon represents the usual
covariant derivative.

2. Rn-gravity

The action for the gravitational interaction in this theory reads

A =
∫

d4x
√−g[χ(n)Rn + LM ], (1)
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where χ(n) is a positive function of n that reduces to 1 for n = 1. For R �= 0, the field
equations for this theory can be written as

Gµν = T M
µν + T R

µν = T̃ M
µν

nχ(n)Rn−1
+

1

2n
gµν(1 − n)R

+

[
(n − 1)

R;αβ

R
+ (n − 1)(n − 2)

R;αR;β

R2

]
(gαµgβν − gαβgµν), (2)

where T̃ M
µν is the stress energy tensor for standard matter. In this way, the non-Einsteinian part

of the gravitational interaction can be modelled as an ‘effective fluid’ which, in general, has
thermodynamic properties different from standard matter3. In the following we will apply the
DSA to the above equations, first for the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
model and then the Bianchi I model with local rotational symmetry (LRS).

3. Dynamical analysis of the FLRW case

In the FLRW metric and considering standard matter as a perfect fluid, the system (2) takes
the form

2n
ä

a
+ n(n − 1)H

Ṙ

R
+ n(n − 1)

R̈

R
+ n(n − 1)(n − 2)

Ṙ2

R2

− (1 − n)
R

3
+

µ

3nχ(n)Rn−1
(1 + 3w) = 0, (3)

H 2 +
κ

a2
+ H

Ṙ

R
(n − 1) − R

6n
(1 − n) − µ

3nχ(n)Rn−1
= 0. (4)

µ̇ + 3Hµ(1 + w) = 0, (5)

with

R = −6

(
ä

a
+

ȧ2

a2
+

κ

a2

)
, (6)

where the ‘dot’ is the derivative with respect to the cosmic time, H = ȧ/a, κ is the spatial
curvature index, w is the barotropic index and we have considered a and R as two independent
fields [2].

The form of the above equations suggests the following choice of expansion normalized
variables:

x = Ṙ

RH
(n − 1), y = R

6nH 2
(1 − n), z = µ

3nχ(n)H 2Rn−1
, K = κ

a2H 2
.

(7)

Differentiating (7) with respect to the logarithmic time N = ln a, we obtain the autonomous
system

x ′ = 2(n − 2)y

n − 1
− 2x − 2x2 − xy

n − 1
+ (1 + x)z − 3zw,

y ′ = y

n − 1
[(3 − 2n)x − 2y + 2(n − 1)z + 2(n − 1)], (8)

z′ = z

(
2z − 1 − 3x − 2y

n − 1
− 3w

)
, 1 + x − y − z + K = 0.

3 Note that the nature of the matter term and the fact that the sign of R is not necessarily fixed makes this theory
fully meaningful only if we consider values of n belonging to the set of the relative numbers Z and the subset of the
rational numbers Q, which can be expressed as fractions with an odd denominator. In the following we will suppose
n to belong only to these specific sets.
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Table 1. Coordinates of the finite and asymptotic fixed points and solutions for FLRW Rn-gravity
in vacuum.

Point Coordinates Solution/behaviour

A [x, y] = [0, 0] a = a0t

B [x, y] = [−1, 0] a = a0(t − t0)
1/2 (only for n = 3/2)

C [x, y] = [ 2(n−2)
2n−1 , 4n−5

2n−1

]
a = a0t

(1−n)(2n−1)
n−2

D [x, y] = [2(1 − n), 2(n − 1)2] a = a0t

(A∞, C∞,D∞,F∞) θ = (0, π/2, π, 3π/2) |N − N∞| = [
C1 ± C0

2 (t − t0)
]2

(B∞, E∞) θ = (π/4, 5π/4) |N − N∞| = [
C1 ± C0

∣∣ n−1
2n−1

∣∣ (t − t0)
] 2n−1

n−1

Note that the two planes y = 0 and z = 0 correspond to two invariant submanifolds. This
implies no finite global attractor exists for this system. The behaviour of the scale factor
corresponding the fixed points can be found using the equation

Ḣ =
(

xC +
yC

n − 1
− zC − 1

)
H 2. (9)

If n �= 1 and (n − 1)(xC − zC − 1) − yC �= 0 this equation can be integrated to give

a = a0(t − t0)
α with α =

(
1 − xC − yC

n − 1
+ zC

)−1

. (10)

The energy density µ can be written in terms of these variables as

µ = zyn−1H 2n, (11)

thus for n > 1 both the (x, y) and (x, z) planes are invariant vacuum manifolds, but if n < 1
the vacuum submanifold is not necessarily compact.

A detailed analysis of this dynamical system is shown elsewhere [2]. Here we will focus
on the interval 1.367 � n < 2. This interval is suggested by the data coming from WMAP
and observations of type Ia supernovae [4].

3.1. The vacuum case

In a vacuum spacetime (i.e. µ = 0), the variable z is identically zero and the third equation of
(8) becomes an identity. Let us analyse this case first. Setting x ′ = 0 and y ′ = 0, we obtain
the four fixed points shown in table 1. In our interval for n, the solution associate with the
point C represents power law inflation and the only finite attractor. This is an interesting result
because this model contains cosmic histories that naturally approach to a phase of accelerated
expansion. However, the presence of the invariant submanifolds already mentioned makes
this attractor not global and we have to check if in the asymptotic regime other attractors are
present.

The idea that the system above might have a nontrivial asymptotic structure comes from
the fact that the phase plane is not compact. The asymptotic analysis can be easily performed
using the Poincaré approach [5]. We obtained six fixed points which are summarized with
their behaviour in table 1. The stability analysis shows that in the interval of n chosen above
there is another attractor (this time global): the point D∞. Using the asymptotic limit of
equation (9) (see [2]), we found that D∞ corresponds to a Lemaı̂tre type evolution in which
the universe reaches a maximum size and then re-collapses. The presence of D∞ reduces the
measure of the set of initial conditions for which an orbit will approach to C, or in simpler
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words it makes this type of cosmic history ‘less probable’. A pictorial representation of the
whole (compactified) phase space is given in figure 1.

3.2. The matter case

When matter is present we consider the full system (8). Setting x ′ = 0, y ′ = 0, z′ = 0 and
solving for x, y, z we obtain seven fixed points and two fixed subspaces. The first four points lie
on the plane z = 0 and correspond to the vacuum fixed points. Of the other three fixed points, G
is definitely the most interesting because of its associated solution: a = a0t

2n
3(1+w) , µ = µ0t

−2n.
The presence of such a fixed point suggests the idea that there could be cosmic histories in
this model in which an (unstable) Friedmann-like phase is followed naturally by a phase of
accelerated expansion. Applying the standard tools of the dynamical system, we discover that
this is actually the case in our interval for n. In fact, for 1.367 � n < 2 the point C is an
attractor and the point G is a saddle; they are both physical and placed in a connected sector
of the phase space. Thus in principle a cosmic history like that pictured above is possible.
This is also confirmed by numerical investigation of (3)–(5). The remaining thing to check is
the presence of other attractors in the asymptotic regimes. The compactification is achieved
in the same way as the vacuum case, but the equations obtained are much more complicated.
Here we will limit ourselves to say that there are other attractors in the phase space and that
their presence reduces the measure of the set of initial conditions that lead to a cosmic history
connecting G and C.

4. Dynamical analysis of the LRS Bianchi I cosmologies

In order to obtain the simplest possible form for the field equations in the LRS Bianchi I metric,
we use the (1 + 3) covariant approach to cosmology [6]. In this formalism the cosmological
equations can be written as

�̇ +
1

3
�2 + 2σ 2 − 1

2n
R − (n − 1)

Ṙ

R
� +

µ

χnRn−1
= 0, (12)

1

3
�2 − σ 2 + (n − 1)

Ṙ

R
� − (n − 1)

2n
R − µ

χnRn−1
= 0, (13)

σ̇ = −
(

� + (n − 1)
Ṙ

R

)
σ, (14)

together with (5). Here, the dot represents the derivative along the observer’s velocity field
[6], � is the volume expansion � = 3 ȧ

a
= 3H and σ is the square root of the magnitude of

the symmetric shear tensor σab. The set of expansion normalized variables is

x = 3Ṙ

R�
(n − 1), y = 3R

2n�2
(n − 1), z = 3µ

χnRn−1�2
, 
 = 3σ 2

�2
, (15)

and the dynamical system can be written as


′ = −2

[(
2n − 1

n − 1

)
y + z

]

,

y ′ = y

n − 1
[(2n − 1)
 − (2n − 1)y + z + (4n − 5)],

z′ = z

[
(2 − 3w) − z + 
 −

(
3n − 1

n − 1

)
y

]
,

1 − 
 + x − y − z = 0.

(16)
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Table 2. The finite and asymptotic fixed points and eigenvalues for Rn-gravity in a LRS Bianchi I
model. 
∗ is the generic coordinate on the fixed line, 
c is an integration constant.

Fixed subspaces Coordinates Scale factor Shear

Ã (
, y) = (
0, 4n−5

2n−1

)
a = a0(t − t0)

(1−n)(2n−1)
(n−2) σ = 0

L1 (
, y) = (
∗, 0) a = a0(t − t0)
1

2+
∗ , σ = σ0a
−(2+
∗)

A∞ φ = 0 τ − τ∞ = 1

c

ln |t − t0| + C σ = σ0a
−(2+
c)

(B∞, C∞) φ = (
π
2 , 3π

2

) |τ − τ∞| = [
C1 ± C0

∣∣ n−1
2n−1

∣∣ (t − t0)
] 2n−1

n−1 σ = 0

D∞ φ = 7π
4 |τ − τ∞| = [C1 ± C2(t − t0)]2 σ = σ0

The solution associated with each fixed point can be found via the equations

�̇ =
(

n

n − 1
yi − 
i − 2

)
�2

3
, σ̇ = −1

3
(2 + 
i + yi + zi)�σ. (17)

For n �= 1, σ �= 0 and a RHS different from zero, these equations admit the solution

a = a0(t − t0)
α, α =

(
2 + 
i − n

n − 1
yi

)−1

, (18)

σ = σ0a
β, β = −(2 + 
i + yi + zi). (19)

As in the previous section we will focus on a specific intervals of n referring the reader to [3]
for a general analysis.

4.1. The vacuum case

In order to treat the vacuum case, we set z = 0 and we neglect the equation for z as in the
FLRW case. Setting 
′ = 0 and y ′ = 0 we obtain the fixed subspaces and their solutions
(see table 2). Note that the fixed point Ã represents the same solution associated with the
point A. Direct verification with the cosmological equations reveals that this point represents
an isotropic (σab = 0) solution. The presence of such a point is particularly interesting
because it means that there could be cosmic histories during which the universe goes through
an effectively isotropic state. Two interesting cases arise. When 1 < n < 5/4, the point Ã is
a repeller and part of the orbits emerging from it approaches the fixed line. This means that in
these cosmic histories the universe goes through an effectively isotropic state (see figure 1).
Since, as well known there is no isotropic past attractor in anisotropic GR cosmologies, this
result implies that in Rn-cosmology, like in brane cosmology, there is no need for special
initial conditions for inflation to begin [3]. When n > 5/4, Ã is an accelerator expansion
attractor and all the y > 0 orbits start on L1 and converge to it (see figure 1). So this scenario
presents the same smooth transition between a decelerated and accelerated expansion of the
FLRW case.

If we analyse the asymptotic regime for this last case we can see that for n > 5/4 the
point D∞ is an attractor (see table 2), but it is in a separate section of the phase space with
respect to Ã, so that Ã can be considered a global attractor for the y > 0 orbits.

4.2. The matter case

Setting 
′ = 0, y ′ = 0 and z′ = 0 in (16) we obtain, together with the vacuum fixed points,
other two fixed points, one of which (G̃) is an isotropic point associated with the same solution
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Figure 1. Global (compactified) phase spaces for Rn-gravity. The first picture represents the
FLRW case with 1.36 � n < 2; the second the Bianchi I case for 1 < n < 5/4 and the third
the Bianchi I n > 5/4 case. The standard capital letters represent the finite fixed points and the
underlined capital letters represent the asymptotic fixed points. The point 
 is not a fixed point
but it is defined as the last attractive point of the fixed line. The curly capital ‘l’ represents the
line L1.

of G. Let us check if it is possible to have a cosmic history similar to the one we found in
section 3. For n > 5/4, the fixed line is repulsive nearby the origin, the point G̃ is unstable
and the point Ã in an attractor. Since these points are not separated by any invariant subspace,
there is in principle an orbit that connects them. Along this orbit, the universe starts in an
anisotropic state, isotropize towards a Friedmann-like state and smoothly approach a phase
of accelerated expansion. Of course we still have to determine how many other attractors
are present (and so how ‘probable’ this evolution is) so that a detailed asymptotic analysis is
required. Using the results of [3], it is possible to show that there are other attractors in the
phase space that might influence the global evolution. However, we can conclude that there
still is a set of initial conditions with nonzero measure for this type of cosmic history and it
surely deserves more study.

5. Conclusion

In this paper we have very briefly reviewed some results obtained applying the DSA to
cosmological models based on fourth order gravity. This method has given new insights
on these models and it has shown a deep connection between these theories and the cosmic
acceleration phenomenon, which is worth for further study.

The prospect for future applications of DSA to higher order gravity can be basically divided
into two thrusts. The first one consists in the analysis of more complicated Lagrangians. Some
work in this direction has already started in [7] with quadratic gravity. The second one is
the generalization to more complicated metrics, which will allow us to consider different
physical framework. In the future, both of these thrusts will make it possible not only to
develop experimental tests for alternative gravity but also to allow a better understanding of
the reasons underlying the success of general relativity.
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